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ABSTRACT

The paper proposes a unification of the two main frame-
works commonly used for the analysis of collective decision-
making: the framework of preference aggregation, developed
from the seminal work of K. Arrow on social choice theory;
and the more recent framework of judgment aggregation.
Such unification provides several original insights on collec-
tive decision-making problems. The methods used are based
on logic and, in particular, on formal semantics.
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1. INTRODUCTION
In recent years, theories and techniques originally devel-

oped in economics have been systematically deployed in the
analysis of several problems arising from the organization,
coordination and management of Multiagent Systems. One
of these theories, which has been obtaining increasing at-
tention, is social choice theory [7]. Social choice was born
with the pioneering work of K. Arrow [1] and is broadly con-
cerned with designing and analyzing methods for collective
decision-making, and in particular with charting the con-
tours of the possibility (and impossibility) of such methods.

Preference aggregation (PA), and the younger judgment
aggregation (JA), are two related sub-disciplines of social
choice theory which are of particular relevance for Multi-
agent Systems [3]. While PA studies the aggregation of a
profile of agents’ preferences into one collective preference,
JA (see [12] for an overview of the field) studies the aggre-
gation of profiles of agents’ judgments concerning the accep-
tance/rejection of a set of issues displaying logical form. The
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problem, in both these research areas, is for the aggregation
process to preserve, in a non-trivial way, some characteristic
‘rational’ aspects of the individual to-be-aggregated stances,
e.g., transitivity in the case of preferences, and logical con-
sistency in the case of judgments.

The paper aims at displaying the common formal roots of
PA and JA, showing how the two frameworks can be fruit-
fully unified. This unification is motivated by the conviction
that the development of techniques and formal systems, has
to be backed by an appropriate analysis of the correspon-
dences between such systems, in order to make it possible to:
(i) easily compare results and transfer them across different
systems; (ii) provide generalizations of available systems in
a principled way. The present paper offers examples of both
these points. After briefly introducing the two frameworks
of PA and JA (Section 2), the paper provides in Section 3
a correspondence result between the PA framework and the
JA framework (Theorem 1). It will also be shown how, via
such correspondence, both Arrow’s theorem and Sen’s im-
possibility of Paretian Liberal [13] can be imported in JA.
On the ground of theses findings, Section 4 shows how PA
can be extended in order to deal with preferences exhibiting
logical structures exactly like the judgments in JA. Finally,
Section 5 investigates this extended version of the PA frame-
work, providing a characterization of dictatorship (Theorem
2). Section 6 briefly concludes. Sketch of proofs of Theorems
1 and 2 are given in the Appendix.

2. PRELIMINARIES
This section is devoted to an introduction of PA and JA.

2.1 Preference Aggregation
PA concerns the aggregation of the preferences of several

agents into one collective preference. A preference relation
� on a set of issues IssP is a total preorder, i.e., a binary
relation which is reflexive, transitive, and total. P(IssP )
denotes the set of all total preorders of a set IssP . As
usual, on the ground of � we can define its asymmetric and
symmetric parts: x ≺ y iff (x, y) ∈� & (y, x) �∈�; x ≈ y
iff (x, y) ∈� & (y, x) ∈�. The notion of PA structure can
now be defined.

Definition 1. (Preference aggregation structure) A PA
structure is a quadruple SP = 〈AgnP , IssP , PrfP , AggP 〉 such
that: AgnP is a finite set of agents such that 1 ≤ |AgnP |;
IssP is a finite set of issues such that 3 ≤ |IssP |; PrfP

is the set of all preference profiles, i.e., |AgnP |-tuples p =
(�i)i∈AgnP where each �i is a total preorder over Iss; AggP
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is a function taking each p ∈ PrfP to a total preorder over
Iss, i.e., AggP : PrfP −→ P(IssP ). The value of AggP is
denoted �.

Typically, PA studies the aggregation function AggP under
the assumption that it satisfies specific conditions. The most
common of such conditions are the following ones:

Unanimity (U). If all agents strictly prefer x over y, so
does the aggregated preference: (∀x, y ∈ IssP )(∀p ∈
PrfP )[[(∀i ∈ AgnP )[y ≺i x]] ⇒ [y ≺ x]].

Independence (I).1 The aggregated preference over x and y
depends only on the agents’ preferences over x and y:
(∀x, y ∈ IssP )(∀p, p′ ∈ PrfP )[[(∀i ∈ AgnP )[y �i x ⇔
y �′

i x]] ⇒ [y � x ⇔ y �′ x]].

Non-dictatorship (NoDict). There is no agent i such that,
for any profile, the aggregated preference relation agrees
with the asymmetric part of i’s preferences: (�i ∈
AgnP )(∀x, y ∈ IssP )(∀p ∈ PrfP )[y ≺i x ⇒ y ≺ x].

Notice that the definition of AggP in Definition 1 directly
incorporates the aggregation conditions usually referred to
as Universal domain and Collective rationality. In the rest
of the paper the superscript P will be often omitted when
this does not give rise to confusion.

2.2 Judgment Aggregation
Judgment aggregation (JA) concerns the aggregation of

judgments about the acceptance or rejection of a set of in-
terrelated issues (i.e., logical formulae) into one collective
judgment. This section introduces a framework for JA built
on the language of propositional logic. The way the issues to
be judged upon are interrelated with one another depends
on the logic underlying the aggregation problem.

2.2.1 Logic
The logic underlying the aggregation problem defines the

notion of “rationality”by which the individual and collective
judgments should abide. For instance, presupposing propo-
sitional logic, if p and q are accepted as true, so should p∧q.

In this paper we assume the semantics of the propositional
language to be based on many-valued propositional valua-
tion functions f on the [0, 1] interval. As to the meaning of
{¬,∧,∨} the standard algebraic operations of complemen-
tation, max, and min are assumed:

f∗(�) = 1

f∗(¬φ) = 1 − f∗(φ)

f∗(φ ∧ ψ) = min(f∗(φ), f∗(ψ))

f∗(φ ∨ ψ) = max(f∗(φ), f∗(ψ))

where f is a valuation function and f∗ is its inductive exten-
sion. These operations will be of relevance only in Sections
4 and 5 where we will also discuss the algebraic meaning of
implication.

The designated value for the notion of satisfaction is 1:
f |= φ iff f∗(φ) = 1. To put it in the JA jargon, issue φ is
accepted iff it is attributed value 1. Note that it does not
hold in general that f �|= φ iff f |= ¬φ, or equivalently that
f∗(φ) �= 1 iff f∗(φ) = 0, where f is a valuation function for

1This condition is more commonly named IIA (Indepen-
dence of Irrelevant Alternatives).

the propositional language and f∗ its inductive extension.
In the remaining of the paper, in order to denote that a
formula φ is assigned a value different from 1, we will use
the notation φ.

This setting slightly generalizes the JA framework built
on classic propositional logic [11].2 We can introduce now
the two central notions of JA: agendas and judgment sets.

2.2.2 Agendas and Judgment Sets
As anticipated above, the issues IssJ of a JA problem

are propositional formulae. The set IssJ
0 denotes the set of

propositional atoms in Iss. Note that it is not necessarily
the case that IssJ

0 ⊆ IssJ . In other words, the issues might
all be complex formulae. In what follows we will often refrain
from using the superscript J when possible.

Agendas. Intuitively, an agenda is a syntactic entity
denoting all the possible positions that agents can assume
about some issue. The fact that an agent can accept an is-
sue φ is denoted by φ belonging to the agenda, and the fact
that it can reject an issue φ is denoted by the fact that φ
belongs to the agenda. Formally, the set ag(Iss) = {φ |φ ∈
Iss} ∪ {φ |φ ∈ Iss} denotes the agenda of Iss.

Semantically, a JA agenda consists of a set of pairs (φ, φ),
each member in such pairs stating that φ is assigned value 1
and, respectively, a different value from 1, which is 0 in the
standard propositional case. Put it yet otherwise, an agenda
is a set of properties of many-valued propositional valuation
functions, which is closed under negation: φ is the property
enjoyed by those functions f such that f |= φ; and φ is the
property enjoyed by those functions f such that f �|= φ.

At this point it is worth stressing that we have assumed a
slightly different perspective on agendas than the standard
literature on JA. Normally, an agenda is viewed as a set of
position/negation pairs (φ,¬φ). In this view, the judgment
themselves can be seen as formulae of the propositional lan-
guage from which the issues are drawn. Instead, we see
judgments as meta-formulae stating whether a given issue is
accepted (true) or rejected (not true), i.e., as properties or
constraints of valuation functions.

Judgment sets. A judgment set picks one element out
of all position/negation pairs in the agenda. More formally,
a judgment set for the agenda ag(Iss) is a set J ⊆ ag(Iss)
which is non-contradictory and complete (∀φ ∈ Iss either
φ ∈ J or φ ∈ J but not both), and which keeps consistency
with respect to the underlying semantics, i.e., which is sat-
isfiable by at least one valuation function f of the atoms in
Iss0. The set of all judgment sets for the agenda built on
Iss is denoted by J(Iss).

The following simple observations are relevant for our pur-
poses. Given an agenda ag(Iss) and a valuation f of Iss0,
the set Iss(f) := {φ | φ ∈ Iss, f |= φ}∪{φ | φ ∈ Iss, f �|= φ}
is clearly a judgment set. Now, two valuations can be said
to be equivalent with respect to an agenda ag(Iss) when
they give rise to the same judgment sets:

f ∼Iss f ′ iff Iss(f) = Iss(f
′) (1)

Now, let FIss0 be the set of all valuation functions under con-
sideration. An agenda ag(Iss) partitions FIss0 into equiva-
lence classes: |f |Iss = {f ′ | f ∼Iss f ′}. On the other hand, a

judgment set J always determines a set of valuations bJ for

2Recall that, in propositional logic, a formula φ is assigned
value 0 (i.e., it is false) iff φ is assigned a value different from
1 (i.e., it is not true).
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the set of issues Iss, which is so defined:bJ := {f | f∗(φ) = 1 iff φ ∈ J} (2)

The following semantic characterization follows from the def-

inition of judgment set, the definition of bJ in Formula 2, and
of ∼Iss in Formula 1.

Fact 1 (Content of judgment sets). Let ag(Iss) be
an agenda, J ∈ J(Iss) and f ∈ FIss0 such that Iss(f) = J .
It holds that: bJ = |f |Iss (3)

In other words, each judgment set for a given agenda corre-
sponds to an equivalence class in the partition of the valua-
tion space yielded by the agenda.3 On the ground of these
considerations, in what follows we will often use the seman-

tically connoted “ bJ |= φ”, instead of “φ ∈ J”, and “ bJ �|= φ”
instead of “φ ∈ J”.

2.2.3 JA structures
We can now define the structure of the JA problem.

Definition 2. (Judgment aggregation structure) A JA
structure is a quadruple SJ = 〈AgnJ , IssJ , PrfJ , AggJ〉 where:
AgnJ is a finite set of agents such that 1 ≤ |AgnJ |; IssJ is a
finite set of issues consisting of propositional formulae and
containing at least two atoms, i.e., 2 ≤ |IssJ

0 |; PrfJ is the
set of all judgment profiles, i.e., |AgnJ |-tuples j = (Ji)i∈AgnJ

where each Ji is a judgment set for the agenda ag(IssJ);
AggJ is a function taking each j ∈ PrfJ to a judgment set
for ag(IssJ), i.e., AggJ : PrfJ −→ J(IssJ). J denotes the
value of AggJ .

Just like PA, JA studies aggregation functions under spe-
cific conditions. The following conditions are JA variants of
the ones presented for PA in the previous section:4

Unanimity (U�). If all agents accept (or reject) x, then
so does the aggregated judgment: (∀x ∈ IssJ)(∀j ∈
PrfJ) [[[(∀i ∈ AgnJ) bJi |= x] ⇒ bJ |= x]] & [[(∀i ∈
AgnJ) bJi �|= x] ⇒ bJ �|= x]].

Independence (I�). The aggregated judgment on x de-
pends only on the individual judgments on x: (∀x ∈
IssJ)(∀j, j′ ∈ PrfJ) [(∀i ∈ AgnJ)[ bJi |= x ⇔ bJ ′

i |= x] ⇒
[ bJ |= x ⇔ bJ ′ |= x]].

Systematicity (Sys�). If the agents’ judgments on x are
interdependent on the agents’ judgments on y, then so
are the aggregated judgments: (∀x, y ∈ IssJ)(∀j, j′ ∈
PrfJ) [[[(∀i ∈ AgnJ)[ bJi |= x ⇔ bJ ′

i |= y]] ⇒ [ bJ |= x ⇔bJ ′ |= y]] & [[(∀i ∈ AgnJ)[ bJi |= x ⇔ bJ ′
i �|= y]] ⇒ [ bJ |=

x ⇔ bJ ′ �|= y]]].

Non-dictatorship (NoDict�). There is no agent i such
that the value of the aggregation function is always
the ith-projection of its argument: (�i ∈ AgnJ)(∀x ∈
IssJ)(∀j ∈ PrfJ)[ bJi |= x ⇔ bJ |= x].

Notice that Definition 2 incorporates the conditions usually
referred to as Universal domain and Collective rationality.
3Notice that if Iss is closed under atoms, i.e., Iss0 ⊆ Iss,
and we assume the standard semantics of propositional logic,
then J corresponds exactly to one propositional valuation.
4To avoid confusion, the names of the JA conditions will
contain � as a superscript.

2.3 Setting the stage
The paper builds on three simple observations: (i) prefer-

ences are actually defined by sets of statements —judgments—
of the type: (x, y) ∈� and (x, y) �∈�; (ii) preferences can be
studied in terms of numerical ranking functions u, e.g., on
the [0, 1] interval [4]; (iii) numerical functions can ground
logical semantics, like it happens in many-valued logic [8].
In such logics, as well as in propositional logic, the semantic
clause u(x) ≤ u(y) typically defines the satisfaction by u of
the implication x → y:

u |= x → y iff u(x) ≤ u(y). (4)

Intuitively, implication x → y is true (or accepted, or satis-
fied) iff the rank of x is at most as high as the rank of y.5

These observations suggest, first of all, that preferences can
be viewed as special kind of judgments in many-valued logic
(Section 3). In addition, they suggest that the semantics
of many-valued logic provides a viable ground for extending
the framework of preference aggregation in order to include
preferences ranging over logically complex issues, thus in-
corporating a characteristic feature of judgment aggregation
(Sections 4 and 5). The paper systematically explores this
idea and the light it sheds on the theory of aggregation.

3. PREFERENCES AS JUDGMENTS
This section establishes a correspondence between the PA

structures as introduced in Definition 1 and a subclass of
the JA structures introduced in Definition 2. We will pro-
ceed as follows. First of all, in Section 3.1, the simple fact
is noted that every total preorder specifies a set of ranking
functions with the same ordinal content. In Sections 3.2 and
3.3, it is shown that the judgment sets obtained by appro-
priately translating a total preorder, specify the very same
set of ranking functions which is specified by the translated
total preorder. This leads us to the desired correspondence.
Finally, in Section 3.4, PA impossibility results are imported
to JA thus obtaining interesting new interpretations.

3.1 Preferences and ranking functions
Let us first briefly recall the following well-known fact

(see, for instance [4]), which follows from a simple argument
based on the quotient yielded by a total preorder.

Fact 2 (Representation of � by u). Let �∈ P(X).
There exists a ranking function u : X −→ [0, 1] such that
∀x, y ∈ X:

x � y iff u(x) ≤ u(y). (5)

Such a function is unique up to ordinal transformations.6

This fact plays a central role in the present section. Notice
that each ranking function u on a finite set X determines a
linear order 〈u(X),≤〉, where u(X) is the set of values of u
for X. In other words, Fact 2 states that each total preorder
� specifies a non-empty set of ranking functions all deter-
mining isomorphic linear orders. Given a ranking function
u, let us denote |u|〈u(X),≤〉 the set of functions determining
isomorphic linear orders with respect to u. Now, each total
preorder also specifies a set of ranking functions.
5Notice that we do not commit at this stage to any precise
semantics for →, the only requirement on it being that u �|=
x → y iff u∗(x → y) < 1.
6We recall that an ordinal transformation t is a function
such that for all rankings m and n, t(m) ≤ t(n) iff m ≤ n.
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Definition 3 (Content of preferences). Let � be
a total preorder on a finite set X. The semantic content
u(�) of � is defined as follows:

u(�) = {u | ∀x ∈ X, u(x) ≤ u(y) iff x � y} (6)

where u : X −→ [0, 1].

In other words u(�) is nothing but the set of all ranking
functions agreeing with � on the order of the elements in
X. The following simple fact follows from from Definition 3
and Fact 2.

Fact 3 (�-equivalent ranking functions). Let �∈
P(X), u(�) be the content of �, and u a ranking function
on X preserving �. It holds that:

u(�) = |u|〈u(X),≤〉 (7)

To sum up, any total preorder can be associated to a non-
empty set of ranking functions which expresses exactly the
same ordinal information. As a consequence, the set P(X)
of all total preorders over X yields a partition of the set of
all ranking functions u of X.

3.2 Condorcet’s paradox as a JA paradox
In Condorcet’s paradox, pairwise majority voting on is-

sues generates a collective preference which is not transitive.
From Fact 2 we know that any preference relation which is a
total preorder can be represented by an appropriate ranking
function u with codomain [0, 1]. The left part of Table 1
depicts the standard version of the paradox in relational no-
tation, and the middle part depicts the version which makes
use of a ranking function u. The grey line displays the out-
come obtained by pairwise majority.

The basic intuition underlying this section consists in read-
ing the middle part of Table 1 as if u was an interpretation
function of propositions x, y, z on the real interval [0, 1], like
Formula 4 suggests. It is then just a matter of closing the
circle drawn by Formulae 4 and 5. Given a total preorder
�, there always exists a ranking function u, unique up to
order-preserving transformations, such that:

x � y iff u(x) ≤ u(y) iff u |= x → y. (8)

We thus obtain a direct bridge between preferences and judg-
ments via ranking functions. So, by exploiting Formula 8 the
middle part of Table 1 can be rewritten as the right part.

The type of JA paradox we obtain from Condorcet’s is not
just a mathematical diversion, since it relates to the aggre-
gation of judgments in the context of fuzzy classifications.
As a matter of fact, ranking functions can be viewed as fuzzy
interpretation functions, and fuzzy implications7 lie at the
ground of the semantics of concept subsumption statements
in fuzzy description logics [9]. In fuzzy logic, an implica-
tion denotes the relative strength of the truth-degrees of an-
tecedent and consequent. The following example illustrates
a fuzzy reading of a variant of Condorcet’s paradox.

Example 1 (Fuzzy classifications). A committee of
three prosecutors has to decide whether to initiate legal ac-
tion against a physician in the case of a terminally-ill patient
who voluntarily refused medical treatments. The prosecutors

7Formula 4 sets a constraint for the semantics of implication
which is satisfied by several fuzzy semantics for implication.
Section 4 will introduce one of such semantics, known as
Gödel implication. We refer the interested reader to [8].

cannot make up their minds about the juridical category to
be applied. The case at hand looks part-murder, part-suicide,
part-death by natural causes. An exact answer seems hard to
reach, but they want to set at least some guidelines. So, they
decide to vote by majority about accepting or rejecting the
following statements: “it is a case of death by natural causes
at least as much as a suicide” (scd → dnc); “it is a case of
suicide at least as much as a case of murder” (mrd → scd);
and “it is a case of death by natural causes at least as much
as a case of murder” (mrd → dnc). If the first prosecutor
accepts all three statements, the second accepts only the first
one, and the third accepts only the second statement then,
by majority on each statement, they end up in an instance
of the following table, which is a variant of Table 1:

{x, y} {y, z} {x, z}
y � x z � y z � x
y � x y ≺ z x ≺ z
x ≺ y z � y x ≺ z
y � x z � y x ≺ z

{x, y} {y, r} {x, r}
|= y → x |= z → y |= z → x
|= y → x �|= z → y �|= z → x
�|= y → x |= z → y �|= z → x
|= y → x |= z → y �|= z → x

To sum up, by first reading the Condorcet’s paradox in
terms of ranking functions (Fact 2), and then interpreting
such functions from the point of view of logical semantics
(Formula 8), we can show the equivalence between a concrete
PA problem and a JA one. This finding is generalized in the
next section.

3.3 PA = JA→
[0,1]

What we are after is to show that any total preorder can be
translated to a judgment set in such a way that the “ordinal
content” of the total preorder is preserved by its translation.
This directly yields a translation of PA structures to JA
structures.

As illustrated in the previous section, preferences can be
viewed as implications in many-valued semantics. Now,
consider a finite set of propositional atoms P, and the set
im(P) = {x → y | x, y ∈ P}. If IssJ = im(P), then it is a
set of issues consisting of implications alone. In this case we
call ag(IssJ), i.e., the agenda built on such an IssJ , an im-
plicative agenda. The desired translation function can now
be defined.

Definition 4 (Translating �). Define the function

: P(IssP ) −→ 2ag(im(IssP )) as follows:

(�) := {x → y | (x, y) ∈�} ∪ {x → y | (x, y) �∈�}.
Informally, sends total preorders to subsets of the implica-
tive agenda built out of the PA issues, i.e., where IssJ =
im(IssP ). The point is now to show that does actually
better, sending total preorders exactly to judgment sets. As
the following fact shows, it is so that the set of functions
satisfying the constraints specified by (�) consists exactly
of the set of functions preserving the preference �. The fact
follows directly from Definition 4 and Fact 2.

Fact 4 (Semantic content of ). Let �∈ P(X) and
u : X −→ [0, 1] preserving �:

(̂�) = |u|〈u(X),≤〉 (9)

As an immediate consequence we also obtain that (̂�) =
u(�) (by Fact 3) and hence that turns out to be a bijection
between P(IssP ) and J(im(IssP )). It is now possible to
prove the correspondence result.
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{x, y} {y, z} {x, z}
y ≺ x z ≺ y z ≺ x
y ≺ x y ≺ z x ≺ z
x ≺ y z ≺ y x ≺ z
y ≺ x z ≺ y x ≺ z

{x, y} {y, z} {x, z}
u(y) < u(x) u(z) < u(y) u(z) < u(x)
u(y) < u(x) u(y) < u(z) u(x) < u(z)
u(x) < u(y) u(z) < u(y) u(x) < u(z)
u(y) < u(x) u(z) < u(y) u(x) < u(z)

{x, y} {y, z} {x, z}
�|= x → y �|= y → z �|= x → z
�|= x → y �|= z → y �|= z → x
�|= y → x �|= y → z �|= z → x
�|= x → y �|= y → z �|= z → x

Table 1: The many faces of Condorcet’s paradox.

Theorem 1 (Correspondence). Let �∈ P(IssP ). It
holds that:

x � y iff (̂�) |= x → y. (10)

Leaving technicalities aside, Theorem 1 states that each to-
tal preorder can be translated to a judgment set which has
exactly the same ordinal content, that is to say, which or-
ders the alternatives in IssP in the same way. Table 2 spells
out the judgments corresponding to the standard preference
statements about a total preorder �.

Theorem 1, in addition to the fact that function is
bijective, guarantees that the set of all PA structures can
be mapped into the set of all JA structures in such a way
that each PA structure corresponds exactly to one many-
valued JA structure with an implicative agenda. Given a
PA structure SP , this can be easily done by constructing
the corresponding JA structure (SP ) as follows: we pose
AgnJ := AgnP ; IssJ := im(IssP ); PrfJ := (PrfP ) (where

over sets of profiles is defined in the natural way); and fi-
nally, AggJ( (p)) := (AggP (p)). Let us call such JA struc-
tures many-valued implicative JA structures, and let us de-
note the JA problem they formalize as JA→

[0,1]. We thus find
a surjective map of PA into JA→

[0,1].
It is worth to briefly compare Theorem 1 with the corre-

spondence between PA and JA first studied in [11] and then
further investigated in [5]. In that work, a correspondence
is proven which is based on the translation of PA for lin-
ear orders, into JA for first-order logic. Roughly, x ≺ y is
translated to P (y, x) where P is a binary predicate for which
the axioms of linear orders apply. First of all, Theorem 1
proves a correspondence for total preorders, and not only for
linear orders. Second, as will be shown in Section 5, Theo-
rem 1 also offers the stepping stone for unifying PA and JA
by generalizing Formula 8. The first-order logic translation,
although somhow more straightforward, does not seem to
offer similar insights.

3.4 Importing impossibilities
We have obtained a perfect match between the standard

PA structures, and a specific subset of all JA structures. It
becomes therefore possible to import impossibility results

Preferences Judgments

x � y iff (̂�) |= x → y

x ≺ y iff (̂�) �|= y → x

x ≈ y iff (̂�) |= x → y, (̂�) |= y → x

Table 2: Preferences and judgments.

across the two frameworks. In this section we show how two
central results for PA structures transfer directly to JA→

[0,1]

structures via .
To see how results from PA can be imported to many-

valued JA on implicative agendas it suffices to notice that
function (Definition 4) yields corresponding JA versions
of the PA aggregation conditions (see Section 2.1) in the
natural way. We denote the translation of a condition by
prefixing to the name of the condition. For example, (U)
denotes the following condition: (∀x, y ∈ im(IssP ))(∀j ∈
(PrfP )[[(∀i ∈ AgnP )[ bJi �|= x → y]] ⇒ [J �|= x → y]].8 As an

example of the results that can be imported we provide the
JA→

[0,1] formulation of Arrow’s theorem, which follows from
Arrow’s theorem [1] by Proposition 1 and Definition 4.

Corollary 1 (Arrow in JA). For any SJ in JA→
[0,1],

there exists no aggregation function which satisfies (U), (I)
and (NoDict).

A preference aggregation theorem which acquires an in-
teresting interpretation in the JA setting is the so-called
impossibility of a Paretian liberal [13]. Such theorem makes
use of the following PA aggregation condition:

Minimal liberalism (ML). There are at least two agents
who always dictate the ordering of at least one pair of
issues each: (∃i �= j ∈ AgnP )(∃x, y, w, z ∈ IssP )(∀p ∈
PrfP )[[y ≺i x ⇒ y ≺ x] & [z ≺j w ⇒ z ≺ w]].

The JA version of the theorem follows by Proposition 1 and
Definition 4.

Corollary 2 (Paretian liberal in JA). For any SJ

in JA→
[0,1], there exists no aggregation function which satis-

fies (U) and (ML).

That is to say, there is no way of aggregating the judg-
ments of different agents preserving unanimity if there are
at least two agents who have the authority to impose the
acceptance/rejection of at least one implication each. The
impossibility can be illustrated by a simple example, which
expands on Example 1.

Example 2 (Conflicts of expertise). The prosecu-
tors decide to ask two eminent lawyers—Prof.A and Prof.B—
for help. Prof.A is a celebrated expert on the legislation con-
cerning murder and suicide and so, they think, his opinion
should settle the question whether the case at hand is a case
of murder rather than of suicide or vice versa. Similarly,
Prof.B is an expert on the legislation concerning death by
natural causes and suicide and, they think, his opinion will
also settle the question whether the case is a case of death
by natural causes rather than a case of suicide or vice versa.

8Recall Table 2.
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Finally, what the two experts agree upon will also be taken as
settled. So they let Prof.A and Prof.B cast their opinions:9

P̂rof.A �|= dnc → mrd, �|= mrd → scd, �|= dnc → scd

P̂rof.B �|= dnc → mrd, �|= scd → mrd, �|= scd → dnc

The following judgment set Prof.AB would result:

̂Prof.AB �|= dnc → mrd, �|= mrd → scd, �|= scd → dnc

which, however, no ranking function u can satisfy since u
should be such that: u(mrd) < u(dnc), u(scd) < u(mrd) and
u(dnc) < u(scd), which is impossible.10

This section has illustrated how our analysis enables the
transfer of impossibility results from PA to a JA setting.
In the next section we move on to the extension of the PA
framework by incorporating JA-like features.

4. RANKINGS AS TRUTH VALUES
The striking difference between JA and PA is that, in JA,

issues display logical form. Is there a consistent way to talk
about complex issues in PA obtained by performing logical
operations on atomic issues? The present section shows how
to answer this question by generalizing Formula 8.

4.1 Ranking logically complex issues
In the previous section we have seen that, once we consider

the set of issues IssP of a preference aggregation problem
SP to be a finite set of propositional atoms, any ranking
function u can be viewed as an interpretation function of
those atoms on the real interval [0, 1]. The natural question
follows: how to inductively extend a function u in order
to interpret issues in IssP which consist of propositional
formulae, and not just atoms? This question takes us into
the realm of many-valued logics, and several possibilities
are available. However, given Formula 8, we are looking
for something in particular. We want an implication to be
satisfied exactly when the antecedent is ranked at most as
high as the consequent. More precisely, let us denote with ŭ
the inductive extension of the ranking function u. What we
are looking for is a many-valued logic such that the following
holds for any ranking function u and formulae φ, ψ:

φ � ψ iff ŭ(φ) ≤ ŭ(ψ) iff ŭ(φ → ψ) = 1 (11)

That is to say, the desired logic should be able to encode in
the language the total order ≤ of rankings, so that ŭ assigns
the maximum ranking 1 to φ → ψ (i.e., φ → ψ is satisfied
by u) iff the value assigned by ŭ to φ is at most the same
value assigned by ŭ to ψ. The intuition behind Formula 11
consists in viewing the maximum ranking as the designated
value for expressing the truth of compound formulae, and
in particular of those formulae which express preferences
between other formulae. Notice that Formula 11 is just a
notational variant of Formula 8.

The property expressed in Formula 11 turns out to be a
typical property of the family of t-norm many-valued logics,
or logics based on triangular norms [8]. In such logics the
connective → denotes the algebraic residuum operation on

9We do not represent the whole judgment sets, but just their
salient parts.

10Notice that this is nothing but a reformulation of Sen’s
famous example about Lady Chatterly’s Lover [13].

truth degrees (i.e., rankings). Residua come always in pairs
with t-norm operations, so what is going to characterize the
logic we are looking for is the t-norm we choose to be paired
with the residuum denoted by →. In the light of the JA
framework introduced in Section 2, the most straightforward
candidate is the algebraic infimum, denoted by the standard
logic conjunction ∧. To sum up, we want that the following
holds for any ranking function u and formulae φ, ψ, ξ:

ŭ(φ ∧ ξ) ≤ ŭ(ψ) iff ŭ(ξ) ≤ ŭ(φ → ψ) (12)

Then, if we assume the rest of the connectives ¬ and ∨ to
denote, as usual, the algebraic complementation and, re-
spectively, the algebraic supremum, the many-valued logic
satisfying Formulae 11 and 12 is the logic known as Gödel-
Dummett logic (GD in short).11

4.2 Gödel-Dummett logic
Propositional Logic and GD have the same language. As

to the axiomatization, GD is axiomatized by any axiom sys-
tem for propositional intuitionistic logic, plus the linearity
axiom schema (φ → ψ) ∨ (ψ → φ) [8]. This axiomatization
is sound and complete with respect to the concrete linearly
ordered Heyting Algebra on the [0, 1] interval—also known
as Gödel algebra: G = 〈[0, 1],�,�, �, 0, 1〉, where � and �
are the min, respectively, max operations, 0 and 1 are the des-
ignated elements, and � is the residuum operation forming
an adjoint pair with � [6, 10].

5. COMPLEX PREFERENCES
By using the semantics of GD (i.e., the Gödel algebra) it is

possible to extend the PA framework in order to incorporate
preferences between issues represented as logical formulae.
The present section investigates this idea.

5.1 Gödel-Dummett preferences
Take a finite set Φ of propositional formulae. A GD-

valuation of Φ yields a total preorder on Φ. We call such
total preorders Gödel-Dummett (GD in short) preferences.

Definition 5. (GD preferences) A GD preference is a
total preorder on a set of formulae Φ which can be mapped
to the total preorder 〈[0, 1],≤〉 by a function u∗ : Φ −→
[0, 1] such that: i) u∗ is a homomorphism from Φ to G;12 ii)
∀x, y ∈ Φ, x � y iff u∗(x) ≤ u∗(y).

A few comments are in order. Consider a set of issues Φ :=
{p, q, p∧q}. The set of GD preferences over Φ is only a subset
of all the total preorders over Φ, and they are precisely those
total preorders over Φ which rank the issue p ∧ q in such a
way that the meaning of ∧—according to G—is preserved.
In other words, aggregating GD preferences boils down to
doing PA on a specifically restricted domain.

It follows that PA on logically complex preferences is, in
a sense, a subset of the standard PA problem. However,

11It is instructive to notice that, as a result, we get for → the
semantics of the so-called Gödel implication [8]:

u∗(φ → ψ) =

(
1 if u∗(φ) ≤ u∗(ψ)

u∗(ψ) if u∗(ψ) < u∗(φ)

12Technically, u∗ is the restriction to Φ of the homomorphism
from the smallest term algebra including Φ and G.
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the standard PA problem can on the other hand be easily
translated to the aggregation of GD preferences where the
issues are all atomic, e.g., {p, q, r}. And in this sense, PA on
logically complex preferences is a generalization of standard
PA. It becomes possible to express preferences such as “the
least preferred between issues x and y should be ranked at
most as high as z”(x∧y � z), or“the most preferred between
issues x and y should be strictly less preferred than z” (x ∨
y ≺ z). The following example shows in some more detail
what kind of expressivity is gained by such a generalization.

Example 3 (Voting on aggregation constraints).
Being it impossible to reach an agreement between the two
experts Prof.A and Prof.B (Example 2), the three prosecu-
tors decide to vote in order to decide which of the two experts
to believe. They decide to proceed like this: each of them will
cast an “approval” or “rejection” vote for both Prof.A and
Prof.B but, at the same time, they will cast an “approval” or
“rejection” vote also about whether to approve at least one of
the two, since they want to make sure that if the pole ends
up with the rejection of both professors, then they should
have collectively approved such outcome. Again, they soon
discover that voting by pairwise majority could lead them to
the following paradoxical situation:13

{�, A} {�, B} {�, A ∨ B}
A ≺ � B ≺ � A ∨ B ≺ �
� � A B ≺ � � � A ∨ B
A ≺ � � � B � � A ∨ B
A ≺ � B ≺ � � � A ∨ B

The example illustrates how, in GD preferences, the set of
issues (e.g., {A, B, A∨B}) is backed by the logical constant
�, which always obtains the maximal ranking. This allows
us to represent a well-behaved form of voting known as ap-
proval voting [2]. In fact, the faulty procedure devised by
the three prosecutors is an application of approval voting
extended to issues displaying logical form.

The interesting aspect of Example 3 is that the agents
cast votes on a constraint of the aggregation process itself,
namely A ∨ B. They vote whether to accept or not that at
least one expert gets elected. While this is a characteristic
feature of JA, it is not proper of standard PA. This shows
what kind of expressivity the domain of GD preferences al-
lows within the PA setting, enhancing the aggregation of
preferences with features which are typical of the aggrega-
tion of judgments.

5.2 Dictatorship for GD preferences
We discuss here an impossibility holding for PA on logi-

cally complex preferences. Before stating it formally, let us
introduce it in simple terms.

Suppose you want to aggregate a number of GD prefer-
ences, like in Example 3. A way to proceed would be to look
at each pair of issues (x, y), and build a table by checking
whether the statement that (x, y) belongs—or not—to the
preferences of each agent is true or false. That is to say, for
every pair (x, y) write ‘Yes’ if it is so that x � y and ‘No’
otherwise, and write ‘Yes’ if it is so that y ≺ x and ‘No’ oth-
erwise. Applying this idea to Example 3 yields Table 3.14

Notice that the first three columns of this table are a nota-

13We provide only the salient part of the table.
14Only part of the table is provided. It is worth noticing that
we are here applying a typical JA method to a PA setting.

� � A � � B � � A ∨ B A ≺ � B ≺ � A ∨ B ≺ �
No No No Y es Y es Y es
Y es No Y es No Y es No
No Y es Y es Y es No No

Table 3: Judgments about GD preferences.

tional variant of the table in Example 3. Now, suppose you
want to devise your aggregation function for GD to work by
only looking at such Yes-No sequences (i.e., the columns), in
such a way that if two columns are the same in two different
tables (i.e., two different profiles), then the result of the ag-
gregation is also the same. The majority rule clearly satisfies
such requirement, but Example 3 has shown that such rule
would lead to inconsistent collective GD preferences. The
theorem proves that the dictatorship rule for such tables is,
in fact, the only rule satisfying the requirement.

Theorem 2. (Impossibility for GD preferences) Let SP

contain a set of issues IssP s.t. {p, q, p∧ q} ⊆ IssP (where
∧ can be substituted by ∨ or →) and PrfP is the set of GD
preference profiles on IssP . An aggregation function for
(SP ) satisfies Sys� iff it does not satisfy NoDict� .

It should be stressed that the systematicity and dictator-
ship assumed in the theorem are JA conditions, which are
applied to the aggregation of GD preferences via the trans-
lation (Definition 4). It is worth noticing, in particular,
that NoDict� is a weaker form of (NoDict) since the
type of dictatorship involved in NoDict� presupposes the
possibility of dictating ties and not only strict preferences.

Theorem 2 is not just an impossibility result but also a
possibility one. Dropping Sys� would guarantee the inexis-
tence of an agent able to dictate ties as well as strict prefer-
ences. We surmise that several other (im)possibility results
can be proven along the same lines.

6. CONCLUSIONS
By exploiting insights borrowed from the semantics of

many-valued logics, the paper has investigated a framework
for aggregation which unifies features proper of PA with fea-
tures proper of JA. The framework allows to express prefer-
ences over logically complex issues.

Concretely, the paper has proven a correspondence result
(Theorem 1) between standard PA and a specific subclass
of JA problems which has been the stepping stone for the
further extension of the PA framework with JA features. In
addition, a characterization of dictatorship (Theorem 2) has
been provided for the unified framework.
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APPENDIX

Proof of Theorem 1. From Definition 3 we have that:
for all x, y in X, it holds that ∀u ∈ u(�), x � y iff u(x) ≤
u(y) and hence that if x � y then ∀u ∈ u(�), u(x) ≤ u(y).
From Fact 2 we also know that u(�) �= ∅, that is, ∃u ∈
u(�), x � y iff u(x) ≤ u(y). It therefore follows that if
∀u ∈ u(�), u(x) ≤ u(y) then x � y. We thus obtain that,
for all x, y ∈ X, ∀u ∈ u(�), u(x) ≤ u(y) iff x � y. Now, by

Fact 3 and Fact 4 we have that: (̂�) = u(�).

Proof of Theorem 2. [Right to left] It is easy to see
that a dictatorship is always systematic. [Left to right]
A set V ⊆ AgnP is almost decisive for x over y (in sym-
bols, ADV (x, y)) iff: (∀p ∈ P(IssP ))[[[[(∀i �∈ V ), x ≺V

y] & [(∀i ∈ V ), y �V x]] ⇒ [y � x]] & [[[(∀i �∈ V ), x �V

y] & [(∀i ∈ V ), y ≺V x]] ⇒ [y ≺ x]]]. A set V ⊆ AgnP

is decisive for x over y (in symbols, DV (x, y)) iff: (∀p ∈
P(IssP ))[[(∀i ∈ V ), y �V x] ⇔ [y � x]]. We need two lem-
mata.

Lemma 1 (Contagion property). Let SP be so that:
{p, q, p ∧ q} ⊆ IssP , and PrfP is the set of GD preferences
on IssP . If there exists an individual i ∈ AgnP such that
ADV (x, y) for some pair (x, y) in (SP ) then, under the
condition Sys� , i is decisive for any pairs, that is, i is a
dictator.

Proof (sketch). Let x := p, y := q, z := p ∧ q and let I
denote AgnP − {i}. We show that if i is almost decisive for
any of the propositions in {p, q, p ∧ q} then it is decisive for
all of them. Although we provide the proof for conjunction
only, the argument holds for the other connectives as well.

For the properties of GD preferences, we have DV (p, p∧q)
and hence, a fortiori, ADV (x, y) ⇒ DV (p, p∧q) for any x, y.
The same holds for q. We prove the following claim.

Claim: ADi(p, q) ⇒ Di(p∧q, p). We prove that if ADi(p, q)
and p �i p ∧ q then p � p ∧ q, and similarly for p ∧ q ≺i p.
The proof of the claim has the following logical structure:
((¬A ∨ B) ∧ C) → D, so we have to prove two subclaims.

(1) Assume the antecedent of ADi(p, q) to hold. We have
to assume either p �i p ∧ q or p ∧ q ≺i p. Consider the
following class of profiles:

p ≺i q p �i p ∧ q . . .
q �I p . . . . . .

By ADi(p, q) we conclude p ≺ q and therefore p � p ∧ q
since p ∧ q ≺ p is not consistent with the properties of GD
preferences. By Sys� it follows that, whenever p �i p ∧ q
we can conclude p � p∧ q, and whenever p∧ q ≺i p, we can
conclude p ∧ q ≺ p, for all profiles satisfying the antecedent
of ADi(p, q).

(2) Assume that the antecedent of ADi(p, q) does not
hold. We have to assume either p �i p ∧ q or p ∧ q ≺i p.
From (1), by Sys� , it follows that, whenever p �i p ∧ q, we
can conclude p � p ∧ q and, whenever p ∧ q ≺i p, we can
conclude p ∧ q ≺ p, for all profiles satisfying the antecedent
of ADi(p, q). This completes the proof of the claim.

The other claims ADi(p, q) ⇒ Di(p ∧ q, q), ADi(q, p) ⇒
Di(p∧q, q) & Di(p∧q, p), ADi(p∧q, p) ⇒ Di(q, p), ADi(p∧
q, q) ⇒ Di(p, q), can be proven by application of the same
sort of argument. It is now easy to see that by assuming the
almost-decisiveness on a pair we can infer the decisiveness on
all other pairs, which completes the proof of the lemma.

Lemma 2 (Existence of almost decisive voters).
Let SP be such that {p, q, p ∧ q} ⊆ IssP , and PrfP is the
set of GD preferences on IssP . If the aggregation function
for (SP ) satisfies Sys� , then there exist x, y ∈ IssP and
an agent i ∈ AgnP such that ADi(x, y).

Proof (sketch). Because of Sys� , and since all logical
truths unanimously obtain the maximal ranking in GD pref-
erences, there always exists for each pair of issues a set which
is decisive for that pair, that is, AgnP . Let us proceed per
absurdum assuming that there is no almost decisive voter.
That means that for any pair of issues (x, y) there exists a
set V such that, for any profile, ADV (x, y) and 1 < |V |.
Let V be the smallest (possibly not unique) of such sets,
and let J := V − {i}. Take x := p, y := q. Assume now
ADV (p, q). With an argument analogous to that one used
in the proof of Lemma 1 we can prove that DV (p ∧ q, q).
Now, consider the class of profiles where q �V p ∧ q and
q �J p. By DV (p ∧ q, q) we conclude q � p ∧ q and, since
p ≺ q would contradict the properties of GD preferences,
we conclude q � p. From Sys� it follows that DJ(p, q) and
therefore ADJ(p, q), against our hypothesis since J ⊂ V .

The very same argument applies under the assumption of
almost-decisiveness with respect to the other pairs of issues.
This completes the proof of the lemma.

The theorem follows from Lemmata 1 and 2.
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